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IMAGE UNDERSTANDING AND INFORMATION EXTRACTION

ABSTRACT

This report summarizes the results of our research program on Image Under-

standing and Information Extraction supported by the Defense Advanced Research

Projects Agency under Contract F30602-75-C-0150. The report covers the period

* February I to April 30, 1976.

-The objective of our research is to Achieve a better understandi.ng of

image' structure and to use this knowledge to develop techniques for image

analysis and processing tasks, especially Information extraction. Our emphasis

Is on syntactic decompos-ition and recognition of Imagery based on scene analysis.

It is our hope that the results of this research will form the basis for the

development of technology relevant to military applications of machine ex-
/

traction of information from aircraft and satellite Imagery.
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IMAGE UNDERSTANDING AND INFORMATION EXTRACTION

Research Summary

This report sumrmarizes our research progress during the period February

1 to April 30, 1976, in Image Understanding and Information Extraction.

Our research objective is to achieve a better understanding of image

structure and to use this knowledge to develop techniques for Information ex-

traction from imagery. It Is our hope that the results of this research will

form the basis for the development of technology relevant to military applica-

tions of machine extraction of information from aircraft and satellite imagery.

Our research projects fall into five heavily overlapping areas: Image

Segmentation, Image Attributes, Image Structure, Image Recognition Techniques,

Preprocessing, and Applications.

IMAGE SEGMENTATION - We pursue two approaches to image segmentation:

edge detection, and region growing. In edge detection, the thrust of our

research Is to use syntactic methods to help edge detection in noisy and blur-

red Imagery. As a step along that direction, we are studying characteristics

of digital edges. Almost all past works on digital edges and curves dealt

with the ideal situation, while we are Interested mainly in real-life digi-

tized Images. Our experimental results, reported by Tang and Huang, Indicate

that the properties of real-life digital straight edges are quite different

from those of Ideal edges. In the same report, a technique of recognizing

real-line digital straight edges Is also presented.

A by-product of our edge detection research is a technique of accurately

estimating edge locations which holds great promise in mensuration appllca-

tions. This technique, reported by Burnett and Huang, is based on the Viterbi

algorithm. It can take account of arbitrary edge profiles and film noise and

Is computationally simple.
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In region growing, we are studying both region merging techniques and

different similarity measures among rv;ions.

IMAGE ATTRIBUTES - We are doing both texture and shape analysis. A new

class of texture descriptors, the max-min descriptors, has been developed.

These descriptors are very simple to compute and perform extremely well in

various classification problems. We are currently exploiting the use of max-

min descriptors in texture boundary detection and region growing.

In shape analysis, we have done extensive study on Fourier boundary

descriptors and are striving to improve their performance, We are also devel-

oping grammars for various classes of objects of military significance, such

as alrports, and tanks.

IMAGE STRUCTURE - The thrust of our research in this area is to use

syntactic methods to do scene analysis. Fu and Li report on the use of tree

grammar in detecting highways and rivers In LANDSAT imagery. Tree grammar was

also used In helping scene segmentation (Fu and Keng).

IMAGE RECOGNITION TECHNIQUES - We pursue twcZopics: the use of branch

and bound techniques in solving recognition probllis, and the use of context

In statistical classification. In Swain and Yu's report, we see that the use

of context Indeed increases the classification accuracy. However, It is

computationally tedious on conventional serial computer. We are therefore

looking Into the use of the Illiac 4 (via the ARPANET).

PREPROCESSING - The aim of preprocessing is to change the image to a

form which Is more convenient for Information extract!on. Most Images are

degraded by noise and blurring. The reduction of noise and the sharpening of

the Image generally facilitate information extraction. Several noise reduc-

tion techniques are compared by Yoo and Huang. It was found that the



synthetic highs technique works best in balancing the noise level and the edge

sharpness.

APPLICATIONS - We are working on several applications, two of which are

reported here. Wallace and Wintz present some recent results on using Fourier

descriptors for airplane classification. Mitchell and Chen show results of

reducing cloud and haze In LANDSAT imagery using three-dimensional digital

filters.
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APPLICATION OF A FINITE STATE MARKOV

PROCESS MODEL TO IMAGE MEASUREMENT

J. Burnett and T. S. Huang

I. Introduction

Our last report [I] briefly mentioned the possibility of using the

Viterbi algorithm In conjunction with a finite state Markov process model for

making accurate measurements from noisy and blurred images. Here we expand

on this Idea, derive the algorithm and formulas for calculating the perfor-

mance of the algorithm.

A Computer simulation of a specific photographic imaging system shows

the algorithm to produce asymptotically efficient, and unbiased estimates of

object sizes.

Maximum A Posteriori Probability Sequence Fstimation

The maximum a-posteriori probability (MAP) estimate of a sequence I

given a sequence z (z being a degraded and noisy version of I) is defined as
A ;_ A A

a sequence ! - m(I ) such that is a maximum. To calculate

I a model Is needed for the relationship between I and z. We assume the

observation model shown in Fig. 1. 1- (i1,12h,..1 m ) Is the sequence-of

Ideal light intensities with ik the light Intensity of the kth sample point

kentering the Imaging system. Each I k can assume one of G possible values

a,,...,a G % For example I might represent the sequence of reflected light

Intensities from a scan line of an aerial photo of a bridge across a river.

In this case there would be two possible Intensity levels: a1 corresponding

to the light reflected from the water and a2 corresponding to the light

reflected from concrete (or whatever construction material was used In the

bridge). The state at position k, nk is defined to be a set of adjacent

Intensities (i I I Since each I can assume only a finite

k-v'*' ki k+v)

-, . ..;".,.." . -..-. - .- - . .. ..... , .. ,... .. , .-. . .. .. .-..-..-. ..-
.4 . -" : - P --. m : , -- _. " - , ' ' .. ' --' , -



number of values each nk Is one of a finite set [S1.. . S 3. Further (to
k p

within boundary conditions) there is a one to one correspondence between the

state sequence a and thie intensity sequence 1.

The system h(-) represents the degradation of the sequence 1. In the

case of photographic Imagery this includes blurring due to scattering, dif-

fraction, camera motion, etc. as well as the nonlinear relationship between

light Intensity and tilm density. The only assumption that we make on h is

that there is a one to one correspondence between Y - (y,.tee.ym) (where

Yk M h(nk and r.

'I is a sequence of Independent noise samples. We do not rule out

dependence of the noise parameters on the signal, however. For example film

grain noise is approximately normal with a standard deviation proportional

to the signal level.

The Algorithm

By definition the MAP sequence estimate I of I Is

(I) P(.1 i Is a maximum

but since there is a one to one correspondence between I and Tf,(l) is

equivalent to

(2) P(QIz)l^ is a maximumTla
However,

(3) P(L.) - PLZL)/p(z) - P(Z-) P(nl)/p(z)

Due to the Markov assumption of B and the independence of the noise

P~r)  ,TP~k+ ! Tnk)

k-I

1 -%A * *
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1(Pn.) P (37.1 i P(Zklyk) r P(zk h(nk))
k-I k-I

Thus we want to maximize

M

or equivalent minimize
M M

(5) E -I P(n ,,+llnL) -In P(z lh(n )) f E r(TI)
,bml L=I

By assigning a cost or length of r(n£) to each 6ranch of a trellis we can

see that the MAP estimate n represents the lowest cost or minimum length path

through the trelis.

Lot L I be a sequence of states startirg at some initial state at posi-

tion one and ending at state rj at position £. In gen-rai there will be

several possible paths (or sequences nl) through te tre.ll!s that pass

through state n at position 1. Denote this set of paths by '. Let E =

be one of these sequences but with the add itional restriction that

r x 1 r( for any other sequence nrll . (If the two paths

have equally low cost any reasonable procedure for deciding between them

will do.)

^,2,
Thus ri (called the survivor sequence or survivor) is the minimum cost

sequence or path from the fixed initial state to the state Ti at position Z.

Now If the minimum cost complete path from position I to position m passes

through state Ti at position I It must have n!1 as its In;tial segment (-f it

did not we would replace the !n~tIal segment with i1 and get an even lower

cost path, a contradiction).

-.
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Of course we do not know that the mirimum cost complete path p-sses

through state n at position Z. However we do know that It must pass through

one of p possible states at position L. Thus at any position X we only need

store at most p survivor sequences n' and their costs To get to

position L+1 we need only extend all position L survivors by one unit, com-

pute the costs of the possible extensions fron

(6) r(n1  ) - r(n) + r(n+l)

and for each of the p possible states n,+, at position 9+l select the lowest

cost path ending in that state as the position +1 survivor. In summary:

Storage: X (position Index)
.Az

(p such I point survivor sequences)

r(( ) t (costs of each of the p survivor sequences)

Initialization: R-O

-AO0  for each possible inItIal state

F(r) -- JnlTO where ir Is the a-priori probability

that the initial state is n0 (If known)

If the a priori probabilities are not known then any reasonable initial

crst assignment (such as r(n )O for all possible initial states r1) will do.

Recursion

Fnr each of the p possible states at position Y+1 compt,.L

r(n +,n9) r(n ) + r(n,+ i)

for each possible ni find r(n 1) in r(nln) store r +I')
s to re r (T)I and the
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corresponding survivor sequence. At position M there will be at most p

survivor sequences, one survivor sequence terminating at each permissible

position M state. Denote by l the lowest cost of these sequences, . Is the

MAP sequence estimate of rl.

Example. Suppose It Is known that at sample point number one the local

gray level Is zero, that at position eight the local gray level is three and

that someplace between these two points a step change between the levels zero

and three occurred. The degrading system is linear and shift Invariant with

Impulse response h-l - ha h .L. The noise is white, Gaussian with variance13
02. The observed sequence Z" (-.5, +.25, +.75, .5, 2.8, 2.7, 3.3, 3.1).

The possible states ara

S1 - (o,o,o) s3- (0,3,3)

-2  (0,0,3) s4 - (3,3,0)

h(S 1 ) - 0 h(S3) - 2

h(S 2 ) - I h(S4) - 3

By assuming that all permissible chanp-s. of state are equally likely

-n P(ntk+l Ink) terms are the same and can be Ignored. Thus r(ri£,)- (z,-h(Tj)) .

The trellis for this example is shown in Fig. 2. The permissible paths are

shown by dashed lines. The numbers are the costs of the survivor sequences to

each state. The MAP estimate is shown by a solid line. Its total cost Is

1.955 and corresponds to I - (0,0,0,0,3,3,33).

The minimum cost or minimum length path through a trellis problem and

various solution have been around for some time [2]. The algorithm presented

above (commonly called the Viterbi algorithm or VA) was presented by Viterbi

[9] as a technique for decoding convolutional codes. The algorithm has since
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been used by Forney (3] as a solution to the intersymbol Interference problem.

The algorithm also has applications In text recognition [] since It can

exploit Markov dependence in English text and can be applied to scene analysis

problems (5] due to Markov relatlonships between objects ;n scenes.

S. The VA can be used to make measurements ol objects In digitized Imanges

providing the object whose length or width is to be measured Is distingu!shed

from Its background by abrupt changes In reflected light Intensity at Its

edges. A MAP sequence estimate of a scan line across the object can be cal-

culated and the edge locations relative to the start of estimated line can be

subtracted to produce an estimate of the size.

In the next sections formulas will be derived for predicting the per-

formance of the VA at locating edges and estimating widths.

Error Analysis for Step Edges

In the previous section we presented the VA as a possib!e technique for making

measurements from digitized images. The measurement technique consists of

making a MAP estimate of a scan line across the object of Interest and sub-

tracting the position of the boundary points of the estimate of the scan line

to get an estinate of the width. In this section we examine the accuracy of

this technique. In particular we will calculate the probability of mislocat-

Ing a step edge by Ini(n- +l,+2,...) points. It is assumed that a change In

brightness from level a at some initial position to level a at position m
1 2

has been detected. The observed signal is blurred and noisy so that the

location of the step change between levels aI and a2 is uncertain.

Define an error event E by the conditions Ik" ik and I k+lnl+ I -Ik+lnl

but I 0] for k+ <J < k+JnJ. If p is the number of states then there must
i J 

AInl + p-2 (Inl > ) state disagreements (see Fig. 3 for p- 4 , n--2), If Y.
Is the output vector corresponding to I and y is the vector corresponding

.-i

I 
' ' ' ' V'

." * " *- * . , " '' ,. i - '- - ' -
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A

to the t.'ue sequence I then , will be decided over yf

k+lnl+t ^ k+lnl+t
(7) E In P(z Ily) > -r In P(z ly)

j-k-t J-k-t (z

where t - [(P-I)/2] - largest Integer < (P-l)/2

2
If the noise Is normally distributed with zero mean and variance a2 then (7)

becomes

k+ nl+t k+lnl+1
(8) Z (zjyj) ' < Tr (zj-y )

J-k-t j-k-t

or I -r f^12 < Ilj- n12

where Z"- (Zkt,...,Zk,.&.,zk+ n +d

I..Am (yk-t,..'Yk+t+lnl)

YO" (^y k-t,.--G9k+t+jn i)

A

The vectors Z Y Y'can be viewed as three points In Inl+2t+l dimensional

space that define a plane (see Fig.,5).

TT
Define <Z,Y> Z Y - y = YTZ. Now the condition for deciding Y over

J
Y becomes

mI

i r_ Y_ < 1y

(the rtason for the normalization by IIv-YII will be obvious shortly)

~~ ~ ~ 5 ! [< ,_Z <L-Z. < <_Y5 <Zi5Z

pIIv-YII -

10

S.[<yY- " <Z <<Y:YrZV - <Zt-.]tti~11- l . . ..

%



.,' ,. 4, -= 
. ' -  

. , .° ' -- ' '- ." .- -- - --. . ..""- -r-".. - - - .--- -

, -, I

1 _ z *> - < A **-, < <_; F-<.> - <Y " ->

I Y-YI
A

- -) -Z**> <_; E - <-, <_- , -z_-

- i <Y 0 .

<

Iif - y1I I If - )511

Thus an error will occur in deciding between Yand Ywhenever the distance from

t to Y'along the -- , axis Is less than tho distance from rto Y'along the

same axis. Since Z- Y'+ N.the projection of Z- Y'on - - - is determined

by the projection of the noise N' on the axis. This projection is a lIhiear

2
combination of normal random variables with zero mean and variance a and hence

Is also a normal random variable with zero mean and (due to the normal ization

by IIv-YII) variance a2. Therefore the probability that Y" will be decidedover

the correct path YO Is the probability that a normal random variable exceeds

half the distance between YO and YO. With Tn I IY-611 then
n

(10) Prob (decide Y' over Y') = COe dr
n 2

Q W

Now Y - Y - (I - 1) * h (assuming a linear and shift invariant degradation)

wh- I = (0,0,,A,A,A,0,0)

where A m (a1 -a2 )

t-i- ' J , p -" l . . .. . . , . . *... ." -"* "* . .. ' " - - " '-
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- Let U1 (K) be the unit step response of h. Then I 1YY Y1 " I I "
S1 ( y j "y% 2 . 2

- - [(- ) ~
J- T

A E [U (J-K) - U1 (j-ln l -K)] 2

j-k-t

(1.1) A2 Inl+t 2(1. A E [U 10) - Ul (J-Inl)] 2

J--t

For any value of n there are two possible edge locations estimates that

are Inl points in error correspondingto location estimates that are n points

before and n po'nts after the correct location. Thus the probability of an

error event for step edges with known levels is

T
(12) P(En) - 2Q(79)

where T is given by (11).n

Thus far we have only considered the case of constant noise variance.

However, for some tyoes of noise such as film grain the variance of the noise

varies with the signal.

Consider again the problen of trying to locate a step edge between levels

Sa1 and a2 but now assume that the noise variance of the £th sample a
2 depends

on yVo Equation (7) becomes

k+lnj+t ,22 k+lnl+t
(13) E -xn (ONWa'% ) - (z yJ)/2G > - n V27 a

J-k-t Y yj J-k-t yj

2 2
- (zj -yj) /22 yj

or In an obvious notation

PAP-
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2 <(14) laz' +_I 2^ <Ix-Ylo.CA
Y yy

y

where.C E k .
yy yj

The exact probability of deciding Y over Y can be calculated from (14)

by a procedure given in (6] though It is very difficult and will not be con-

sidered here. However, one observation should be made. If Y Is the path
n

through the trellis that mislocates the edge by +n points and Y-n the path that

mislocates the edge by -n points then in general C CAny and
Y'1a2i' JZYy 10 Y-nY AIll- y1 Il - _.Ila Therefore the probability that Y  is chosenn-n

over Y will not be the same as the probability that Y Is chosen over Y.

This lack of equality between Pr(n-a) and Pr(n=-a) causes the random variable

n to have a nonzero mean value which Introduces a bias In the edge location

estimate. Since En - EcPr(n-) and since Pr(n-c) decreases with increasing

signal to noise ratio (SNR) the bias will decrease with increasing SNR.

Further the decision boundaries (and hence the bias) among the various

poss~ble paths are determined by the variances a2 whlch In turn are deter-Yj

mined by the possible levels a,, a2 and the degrading function h. Thus the

probability of mislocating the edge by n points (and hence the bias) Is

Independent of the sample point at which the edge occurred.

If the SNR is high enough the bias can probably be Ignored. If the SNR

Is low the bias can be calculated by the procedure mentioned earlier or found

experimentally by computer simulation.

Extension to Pulses

In ineasurInE the size of an object two edges must be located. If the

object s~ze Is sufficiently large or the signal to noise ratio is high enough

. then with high probability the minimum cost path dnd the correct path through

I,
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the trellis will coincide somewhere Inside the object.

With this assumption the events E- first edge mislocated by n1 points

and E2 - second edge mislocated by n2 points art independent [7]. Thus if

n Is the number of sample points difference between the true width and thew

estimated width

(12) nw  2 ni

P(nw -a) -Z P(n2  a ) P(n1  a - B

where P(n2 = a) 'and P(n1 -0a-1B) can be calculated from (10). The sum is over

all possible values of B that n2 can assume such that n2 - n1 - a.

If the noise varies with the signal level n may not have zero mean. As

In the previous section the bias can probably be Ignored If the SNR is h!gh

enough or calculated theoretically or found experimentally if necessary.

Unknown Levels

In the previous section we presented formulas for the probability of mis-

locating an edge by Inj points. This analysis assumed that the possible levels

aI and a2 that of the process were known. In this section the probability of

error is calculated assuming that the levels are not known a-priori.

A reasonable course of action in the case of unknown levels Is to obtain

"training" samples of the gray levels characterizing the object of interest.
A

These sarples can be processed In some fashion to produce estimates aI and a2

of levels a1 and a2 , respectively. Suppose a1 - aI + and a2 - a2 +

2where £1 and 2 are normal random variables with zero mean and variance 01I

2A Aand a2, respectively. (If aI and a2 are large sample maximum likelihood

estimates of a1 and a2 tilen the above model Is accurate (8].)

1 2
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Let the correct path through the trellis by Y and the estimate be Y. In

this case the correct path Is the one that places the edge In zhe correct

position even though the levels (or height) of the step may be Incorrect. The

lsignal space" diagram of Fig. 5 has been repeated In Fig. 6 with the addition

of a new point 9. 0 represents the output sequence corresponding to the true

edge location and step levels. In general, 0 will not l!e In the plane

defined by Z, Y . However, as before, only the projections of Y - Z and

Y - Z where Z- 0 + N on - - will have any effect on the choice between

Y and Y.

Now YY - h * (oo,...,,l .. .o,o) A -+(a -a
|-:2

n Its

and Y0 - h * (c1, v 1  ,, 1 , 2 ,* 2 ,, 2 ). Thus the projection T'

of Y-0 on ___ will be a linear combination of c and c2" Since a linear

IIY-YI I

combination of normal r.v's Is again normal the only information needed to

characterize T' is Its variance (it will have zero mean sincee I and c2 were

assumed to have zero mean) (Y2 which can be calculated from knowledge of'

Or' a2 , n , and h.

Again, by arguments similar to those in the previous sections the

probability of deciding Y over Y is the probability that the noise along the
T

-V axis exceeds -L - Tor equivalently probability that the sum of two normal2 T
2 2 n

random variables with variances a and ar exceeds

Tn

(13) n and
2 (a +o)r

t

T
P(En) n Q( o n 2-)

n 2(a +C )
n t

N t

p
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This result can be extended to pulse width accuracy as before. If

n - n2 Is the number of sample points of error in the width the estimate

- then

Pr[n -ai] E E Pr[niW] Pr(n -a-0)
w T 2

where Pr(n 1 -0) - 2 c' 2c Equation (13) shows that If the estimates aI

and a2 are such that a2 << a2 then the lack of a-priori knowledge about the

possible levels will have very little effect on the probability of mislocating

an edge.

Simulation Results

A pulse of width thrity sample points was generated and blurred by a

linear shift-invariant system with a Gaussian shaped Impulse response with a

standard deviation of one sample point. This blurred pulse was transformed by

Yk- 1.066 (log 1k 1.5.) + .2 where I Is the kth sample of the blurred

pulse. This transformation simulates the d-log E curve of film. Noise of

standard deviation .4Yk1/3 was added. The noisy blurred signal was then pro-

cessed to produce an estimate of the pulse width. Several different SNR's

were used with one hundred width estimates obtained at each SNR. The results

are shown In Figs. 6 and 7. The bias In the width estimate can be seen to

decrease with increasing SNR as expected. The variance of the estimate can be

seen to decrease with Increasing SNR and appears to asymptotically approach

the Cramer-Rao lower bound.
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DIGITAL STRAIGHT EDGES

G.Y. Tang and T.S. Huang

Studies of the digitization of a stright line have been made by Rosenfeld

[1], Freeman (2], Morse [3], Gaafar [41, Brons [5]. A set of rules has been

established to govern the digitization of an ideal straight line which can be

described by a first order mathematical equation. But, In the real world,

most edges which appear to be straight to our eyes do not fall into this cate-

gory. On the contrary, they suffered from noise, degradation, blurring, etc.

In this report, we are going to show some experimental results on real straight

edges and to compare them with the ideal case. A simple testing algorithm is

then developed to determine If a real edge is a straight one or not. The

"" application of the testing algorithm cani be found in various areas such as

syntactic pattern recognition, character recognition, scene analysis and ef-

ficient contour coding, etc. Our ultimate goal for this study is to use s/-

tactic method to aid us to detect edges In a noisy environment.

In the following, we are to use the word 'real' to refer to whatever is

on pictures obtained by practical imaging devices. The word 'ideal' refers to

the Ideal case.

I. PROPERTIES OF AN IDEAL STRAIGHT LINE:

An Intensive study of the properties that a digitization of a straight

line should have has been reported previously. A brief summary is given here.

(A) Tre Chord property, proposed by Rosenfeld, is a necessary and suffi-

clent condition for a digital arc to be straight.

K. (B) The digitization of any real curve can be expressed in terms of a

chain code [2]. The chain code of a straight line should obey the following

rules.

1) There are at most two different code elements differing by 1, modulo 8.
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2) One of these two codes occurs singly.

3) Successive occurrances of the single element are as uniformly spaced

as possible.

C) For an Ideal straight line with rational slope, the corresponding chain

code is a repetition of a certain period.

D) We can always find a rational slope to approximate a real slope so that

their chain codes are as close to each other as we want.

E) An ad hoc testing algorithm has been proposed [3] to see If a given

chain code may come froo. a straight line.

II EXPERIMENT

The nice properties listed in the foregoing section are based on the

assumption that the lines are ideally straight, the digitization is noise-free

and the digitization scheme is well defined [1], [2]. In the real world, where

a model with such a high order of Idealism can hardly find many applications,

minor randomness corrupts the structures severely. The intention of our ex-

periment Is to observe the code structures of real edges and to compare them

to the ideal case. Aiso we outline a new testing algorithm from our experi-

mental results.

A set of 12 pictures has been taken by a standard Nikon F-2 camera with

35 mm filn. A flying-spot scanrtr is used to discretize the picture into a

square matrix of size 256 by 256. The grey levels range from 0 to 255. A

simple contour follower and a chain code encoder is used to obtain the chain

codes on each picture. Only stralght edges are on these 12 pictures. There

are totally 30 straight edges.

A contour follower Is designed so that the output of the contour follower

is the chain codes of the edge which It follows. The input to the contour

follower is a window of size 3x3. We assume that the center of the window is

.' : . . . . . . . . ...: * , - ' " . , . . .. " " - " ' " ' - . . . ." . .. " "
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on the contour and that we know which of Its eight neighbors is also on the

contour. The task of the contour follower is to find a point which is supposed

to be the next contour point among the eight neighbors around the center. Then

the window moves to and centers at that point. The direction of move Is en-

coded by Freeman's me-chod. Repeating the same procedure, we can obtain the

whole contour. The way to locate the next point from the eight neighbors of

the center is simply looking at the eight neighbors in counter-clockwise sense

starting with the neighbor already known on the contour. A thresholding tech-

nique !s used to 61scriminate the two regions defining the contour.

Table I shows which ideal properties are violated by chains obtained from

real pictures.

The Ideal edge is not what one finds in the Images produced by real-life

Imaging devices. There are several factors that degrade the edges that are

actually found. Two predominant ones are blurring, or defocusing, and ir-

regularities of the surface structure of the object. Besides, for the case of

straight edges, a slight concavity or convexity can be considered as another

kind of disturbance. The net effect of these disturbances of Freeman chain

code can be summarized as:

1) A third code element is introduced if there is a missing or spurious

lattice point. This third code element wili occur together with the code

element which occurs singly. Figure I illustrates this.

2) A third run length is introduced if the missing or spurious lattice

point occurred at the beginning or at the end of each run. Fig. 2 illustrates

this.

3) Other types of errors occur which cannot be characterized easily.

Fig. 3 shows us the test pictures.

' -"... ;;--_ ,; ;(7,;.- -, i . . - '.-- -
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III. STRAIGHT LINE RECOGNITION

To recognize a real chain code as a straight line is not straightforward

since we have no rigorous definition of what Is a real straight edge. Here we

propose to employ a heuristic method to solve the problem of the recognition

*of digital straight lines.

The basic strategy of our approach Ts rather simple. We art attempting to

enclose a digital straight line by a straight band. If such a band with

reasonable bandwidth could be found for a given chain code, then we claim that

that chain code corresponds to a straight line. Mathematically, a straight

band is defined by an .*quality

JY- mXJ<k

where m is the slope of the straight band and k Is related to the bandwidth of

the straight band. Two parameters, m and k, are therefore to be determined

from a given chain code. We proceed as follows:

Step 1 - Check if there are only two code elements; one occurs singly.

Yes; go to Step 3

No; go to Step 2.

Step 2 - Correct all possible first kind of errors mentioned In the pre-

vious section. Then check If there are only two code elements left; one

occurs singly, if It Is yes, then go to Step 3; otherwise do the following:

Calculate the percentage of the 3rd, 4th .. etc. code elements to the

total length of the chain code and the percentage of the second code elements

which should occur singly in Ideal case but occurs In runs In this case to the

total number of the second code elements. Then compare these two percentages

to two preset thresholds. Once they are smaller than the thresholds, go to

Step 3; otherwise the chain code is rejected as a straight line.

* ..L
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Step 3 m Is the ratio of the element which occurs singly to the total

number of 1st and 2nd elements.

k Is a subjective quantity. It relates to the noise level of the picture,

the sharpness of the edge and the resolution of the picture.

It seems that so far we have taken few advantages of the nice structural

regularities existed among ideal straight lines to aid us in developing test-

ing algorithm for the non-ideal case. A rather straightforward heuristic

method has been devised to further reduce the number of testing points. It

Is noted that the straight band is a geometricaljl 'convex set. So, only the

two ends of each run on the chain codes neei to be tested. Furthermore, if we

apply a simple operation which Is to replace each run by its run length and to

delete the code elements occurred singly, then the output of the operation

should obey the rule: only two code elements; one occurs singly, for the

Ideal case. For the real chain code, we may apply the same operation Itera-

tively to it until the output fails to follow the rule. We then use the

final one as a clue to break the initial input chain Into several pieces oF

line segments, Only the ends of each line segment are to be tested. An

example illustrating this follows:

A chain code from picture No. 7 in our experiment is
A

010101010101010101010100101010101010101
A

010101010100101010101010101010010101010
A A

101010101010100101010101010101010010101
A

LI 0~~~~ ~ ~ ~ 1 0 1. 0. 1 -- 10101010101
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The first output of our operation Is:

1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2A A A

1111111111211 111112111111 11111111 .

The next output is:

11 12 8 10 8 9 5 • It falls to follow the rule. So

we trace back and locate the potential testing points (withA ) on each gen-

eration. The coordinates of the testing points with respect to the initlum

are then (22,11), (49,29), (68,33), (90,44), (110,53), (131,63).

Table 2 shows the result of applying the foregoing method to test 17

chain codes obtained In our experiment. The "MIN THRESHOLD" means the small-

*st k value we have to choose in order to report the edges Etraight. Also we

applied Morses algorithm to test these real chain code. It does not work as well.
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[1]. A. Rosenfeld, "Digital Straight Line Segments," IEEE Trans. on Computers,
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[2]. H. Freeman, "Boundary Encoding and Processing," in Picture Processing and
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[4]. M. Gaafar, "Convexity Verification, Blockchords, and Digital Straight
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Line No. 1 2 3 4 5 6
2-1 X X X X X X2-2 X X X X X X2-3 X X X X X X
2-4 x x x x x x
3-1 V V V V V x
3-2 V V x X X x3-3 V V X X X X
3-4 V V X X X X
4-I V V X X X X
4-2 V V V V V X4-3 V V V V X X4-4 V V V V V x
4-5 V V x x x X4-6 V V x x x x4-7 V V V V V V
4-8 V V V V V V5 V V X X X X6 X X X X X X7 V V V V V X
8 V V x x x x

9-1 V V V V X X9-2 V V X X X X
10-1 V X X X X X
10-2 V V X X X X1i-I V V X X X X
11-2 V V X X X X
12 V V X X X X1-1 X x x x x x1-2 V V V V V V1-3 X X X X X X

I. Only two code elements
2. One of the two code elements occurs singly

Two run lengths are consecutive Integers
One of the two run lengths occurs singly.
The runs of the run lengths can be of at most tworun lengths: one of which occurs singly

Table 1. Comparison of real cases and Ideal case.

S " . -. . + . . " .

_-- - - _ -



32

Line No. Length Mtn. Threshold MORSE

3-1 147 .795 NO

3-2 49 .755 NO

3-3 54 .833 NO

3-4 58 .724 NO

4-1 82 1.329 NO

4-2 47 .404 YES

4-3 42 1.524 NO

4-4 127 1.055 NO
5 238 1.345 NO

6 237 1.456 NO

7 130 .435 YES

8 209 1.004 NO

9-1 85 1.17 NOK 9-2 245 .942 NO

0-1' 147 1.258 NO

10-2 40 .900 NO
11-2 181 1.127 NO

Table 2 The result of the proposed method In comparison*" with Morse algorithm.

Idl
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perfect case:

x-x x xxxxxx
x-x x-x-x-x x x x

00 00 00 00 10 00 00 00 0

a missing point:

x x-x x x-x-x-x
x x-x x x-x x

x
0 07 10 00 10 00 00 00 0

two missing point:

S.. x-- x-x-xxx

S.,. x

0*0 7 0 1 0 0 1 0 0 0 0 0 0

a spurious point:

x x-x-x-x-x-x-x x
x-x-x x x-x-x-x

00 17 0 00 1 000 00 00 0

two spurious point:

x x x-x-x-x-x-x-x-x
x-x-x x x x-x-x

Fig. 1. Missing or spurious points occurred in -;uns
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SIperfect one:

x- - x- x
x xxx-x-

x x- x - x - x0001000 1000

a spurious point:

x - x- x
xx - x - x - x

0 1 0000 1000

a "issfng point:

Fig. 2 Missing or spurious points occured at the
ends of a run

- .*---X -X -X -X

- .x-2-*-, -X -X -X.

* X - -X -X -Xj~.~ -----
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No. 2

p No. 4

Figure 3 Examples of test pictures
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No. 5

No. 7

Figure 3 Examples of test pictures
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IMAGE STRUCTURE: SYNTACTIC SCENE ANALYSIS

K. S. Fu and R. Y. LI

The essential problem in our research on the syntactic pattern recognition

of highways and rivers Is really to find a grammar that will describe well

these classes of Interest. If the physical shape of the class under consider-

ation is completely known and fixed, like printed English character; we can

Immediately write down the syntactic rules to describe Its structure. Since

this is not quite true in our case, the construction of grammatical rules has

to be based on informatlons obtained from a set of sample patterns known to

come from that class. Hopefully, this set of inferred rules should be able to

describe and predict other sample patterns which are of the similar nature as

the original training samples and presumably In the same class. A basic ap-

proach of grammatical inferrence problem is to construct a grammar by identify-

Ing the syntactic structures of the known string and any possible recursiveness

that might happen. There are three steps:

(1) Try to discover the syntactic structure of the given string by looking for

repetition and dependent relationships.

(2) Decide what sublanguages make up the language and generate non-terminals

for each sublanguages.

(3) Combine equivalent nonterminals which have almost the same sublanguage and

determine the appropriate relationships among sublanguages.

One practical method to learn the syntactic structures of the given pictures

Is to use a semantic teacher to learn the meaningful nonterminals one level at

a time C1]. To start the inferrence process, we first find the types of term-

Inals or primitives that will fit the subparts of the picture pattern for a

given window size. After this initial extraction process, we have to decide

the most probable combinations of primitives which occur as neighbors of each

* . . - - ---
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other in the set of observed training samples. These combinations are then

applied to the training data set to test their recognition effectiveness. When

the results appear tc be satfsfactory after some additions and deletions of the

combination rules, we can choose this set of rules to represent the training

samples. The appropriate grammar can then be formulated by using these rules.

In our present case, we chocse the tree grammar because of iks easiness to

describe these rules. A tree recogniticn program based on this tree grammar

can then be used to recognize the training data set of Lafayette and a test

data set, that of Grand Rapids, Michigan. Figures (1), (2), and (3) contain

the results from Lafayette experiment. Other preliminary results from Grand

Rapids can be found in reference (3].

References

[!] Brayer, J.M. and K.S. Fu, "Web grammar and its application to pattern
recognition," TR-EE 75-1, Purdue University, W. Lafayette, In 1975.

[2] Evans, T.G., "Grammatical inferrence techniques in pattern analv ;is",
Software Engineering, Vol. 2, T.J. Tou (ed.), Academic Press, 1971.

[3] Li, R.Y. and K.S. Fu, "Tree system approach for LANDSAT data interpreta-
ton", Purdue Symposium on machine processirg of remotely-sensed data,
June 29 - July 1, 1976.
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SYNTACTIC SCENE SEGMENTATION

K. S. Fu 3: J. Keng

A syntactic approach to scene segmentation has been investigated which

Involves two levels of processing. The first level, referred to as the

transformation process, consists of five. steps referred to as (1) threshold

finding, (2) horizontal processing, (3) vertical processing, (4) logic

*" Integrating, and (5) line smoothing. The second level, which is the actual

syntactic analysis, requires infererce of a tree grammar to describe the

boundaries of homogeneous regions. The tree grammar is then implemented In a

parser which traces the region boundaries.

Tt e approach has been Implemented and Initial experiments on multi-

spectral remote sensing Imagery ace being conducted. Further detail and

experimental results will follow.

Working on the problem of picture segmentation through a syntactic

approach, we feel that the evaluation of the earth resources Is very useful.

So, the multispectral remotely sensed picture Is chosen as data.

There are two levels of processing for the syntactic picture segmenta-

tion, first, the transformation process and, second, the tree grammar analysis.

The first level consists of five sub-processes, threshold finding, horizontal

processing, vertical processing, logic Integrating, line smoothing. The

process of tree grammar analysis utilizes the corresponding parser from the

Inferred tree grammars to process the transformed picture. Then a picture is

Is
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Syntactic Picture Segmentation

a. First level - transformation processing

(1) Threshold finding

From a digitized picture, training regions are located from every

homogeneous parts of the picture, then the differences between two of

these means of grey levels of the training regions are calculated. If

they are close to zero we neglect them, then the minimum of them is

selected as a threshold.

(2) Horizontal processing

The model of the multisectral Images is defined on the Euclidean

no-dimensional space En which Is a space having n coordinates

x Irx 2P, ,X no The number n here represents the number of channels to

be chosen. A point of the space Is by definition an ordered n-tuple

(xIX 2 ,o..,xn). The distance between two points is defined as

Euclidean distance. The operation procedure Is to compare the grey

levels of (1,1) and (1,2). If the distance Is smaller than threshold,

then set zeroes to (I,]) and (1,2). Then, (I,1) and (1,3) are compared,

if the distance Is greater than threshold. A one is put to (1,3) and

the same operations start from (1,4). The operations on second row

follow the same pattern.

(3) Vertical processing

The operations are the same as horizontal processing except

It goes vertically instead of horizontally.

.(4) Logic Integrating

The logic variable of horizontal processing is named as H and V

for the vertical processing. The logic Integrating process achieves

the Integration through Boolean algebra V+H.

*'., . - . -. : -. -0. . . . • . •
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(5) Line smoothing

The line smoothing algorithm connects the discontinuity of the

lines. As for this part, lots of line smoothing algorithms can be

devised.

b. Second level - tree grammar analysis

A tree grammar Is Inferred to describe the boundaries of the

homogeneous regions. The tree grammar Is used to trace the boundaries

and reject the unnecessary boundary parts. Finally a segmented picture

Is received from the (two level) syntactic method.

The scheme of syntactic picture segmentation has been Implemented and

the experiments have been conducted on the multispectral remotely sensed

pictures of an area in the State of Indiana. The pictures were taken on

August 13, 1971 and stored In the computer IBM 360/67 of the Laboratory for

Applications of Remote Sensing in West Lafayette, Indiana.

The result of a picture 96x96 area Is shown in Fig. 1. For the purpose

of comparing processing time and accuracy, a result of statlstical segmenta-
tion by clustering Is also provided In Fig. 2. The computer processing time

on IBM 360/67 for the same area of the picture, the syntactic picture seg-

mentation takes about 36 seconds and the clustering technique requires 180

seconds.

The area of column (105-132) and row (444-450) In Fig.. 1, shows lots of

boundary points. From a survey of the ground truth (Fig. 3), it points out

the reason. Because this area Is pasture and bare soil compound area. So

lots of boundary between these two objects of the compound area are located.

A classified result of the same area is also provided In Fig. 4. In the

region column (90-100), row (480-488) in the syntactic segmentation result

. .

. *,~F -. " ° " ", . % + ., + ., - , -++ - , - . •. *. - - . .
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shows a segment which corresponds to the same location in the classified

* result, But the clustering result can not segment It well.
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fHE SYNTACTIC PICTIUE SEGMENfATION RESULT
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Figure 3 The ground truth of the area of Fig. 
I
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STATISTICAL DEPENDENCY MODELS OF CONTEXT

P. H. Swain and T. S. Yu

In the previous quarterly report, we described a model for incorporating

context in the Image analysis process through compound decision theory.

Briefly, under a fairly stringent set of assumptions a Bayesian strategy Is

employed which classifies a point into one of a candidate set of classes based

on the multispectral data from the point itself and the data from either the

neighboring four or neighboring eight points. Figure 1 shows the results of

applying this approach for classifying a small set of LANDSAT multispectral

scanner data. A block of Imagery 128x128 pixels was classified using the

4simple" rule (no context), with the 4-neighbor rule, and with the 8-neighbor

rule. Samples of 900 pixels (30x30) were selected exhibiting a range of

pointwlse accurles and the corresponding accuracies obtained using the context-

Incorporating rules were tabulated together with the corresponding classifica-

tion times. The results of the experiment show, as expected, the classifier

using context Is consistently better than the classifier which makes each

decision based on data from the individual points. Furthermore, the "8-

neighbor classifler" Is consistently better than the "'4-neighbor classifier".

However, the price paid in terms of computation time is substantial. To

Justify general use of this approach we shall have to demonstrate (a) its

performance potential over a sufficiently broad range of analysis problems,

and (b) a means of Implementation (special purpose hardware, software, or a

combination thereof) which Is efficient enough to provide results on a cost-

effective basis.

. E . . . . .. ,
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IMAGE NOISE REDUCTION

M. Y. Yoo and T. S. Huang

I. INTRODUCTION

There have been many attempts to enhance images degraded by detector noise

and Imperfection of the Imaging system [1-4]. In most cases we encounter two

contradicting requirements: reducing the noise as much as possible, and retain-

Ing edge sharpness. The only reasonable answer !s a compromise between the

two. We will approach this problem using the synthetic highs technique where

we can treat the smoothly varying part and the sharply changing boundaries

separately and we may enjoy some freedom in compromising the two situations

[5]. The performances of the system will be compared with several available

heuristic approaches [6], [7].

II. IMAGE ENHANCEMENT SYSTEMS

2.1 Synthetic Highs Technique

This technique was proposed by Schrelber [8] and was used in two dimen-

sional contour coding for data compression by Graham [9]. The basic Idea of

this technique is to decompose the image into two major elements (slowly

varying "lows" and synthetic highs" which are mostly boundaries and textured

parts) such that the recombination of the two elements results In the original

again.

The technique was described fn detail in previous reports and in Graham

[(], and we are not going to repeat that here again. To use the technique for

noise reduction, we need a noise reduction filter between the edge detector

and the reconstruction filter. So we need an acceptable boundary detector for

noisy Images. Tang's (10] or the following simple edge detector may be

used:

.. . * . -



53

Low Pass FIilter

Noisy u i xy)
Picture ,P

Edge Detector Noi se Reductio Reconstruction
Gradient or Filter F*Ii t e r

Laplacian

Reconstructed
Picture

Fig ure I Synthetic highs technique

Flrst we calculate the grey level differences In four lfferent direc-

tions; horizontal, vertical, diagonal 1 (450), and diagonal 2 (1350) as

follows:

Horz - IG(x,y-Ay) - G(x,y+Ay) I Vert IG(x-Ax,y)- G(x+Ax,y)I
G (x,y-Ay)+G (x,y+Ay) G (x-Ax,y) + G (x+6x, y)

diag 1 IG(x-Axy+Ay) - Gtx+Ax,y-b.y)
G(x-Ax,y+Ay) + G(x+Ax,y-Ay)

dlag 2 = JG(x-Ax,y-Ay) - G(x+Axy+Ay)I
G (x-Axy-Ay) + G (x+Ax,y+Ay)

Whenever one of the following conditions holds we decide (x,y) is on the

boundary.

I) Horz > ei and Vert < e2
I1) Horz < e. and Verr > eI

I11) dlag 1 > 8 and diag 2 < 2

Iv) diag 2 < e2 and diag 2 > e

where 81, e2 (0 <8e, 82< 1) are preassigned threshold values. Typical

values of 61, e2 are 0.2, 0.1.

.. ..
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2.2 Median Filter

We use an nxn (n is odd) window to scan the noisy Image and replace the

grey level of the center by the median grey level within the window. Pratt

[6] used one-dimensional window to remove impulse noise. Resolution of the

filtered Image is highly dependent upon the size of the window and appropriate

size should be chosen to retain reasonable boundaries. 3x3 and 5x5 windows

were used for our experiment.

2.3 Variable Width Filter
isi

First we take the gradient of the noisy image and divide the absolute

gradient level into four different Intervals. We assign the smoothing filter

of an appropriate size to each interval such that the lower the absolute

gradient level is) the larger the duration of the filters impulse response is.

One dimensional Gaussian and median filters can be used in the horizontal and

the vertical directions sequentially.

The basic idea of this approach Is that we retain more boundaries where

the absolute gradient level is high by using narrow smoothing filters and

heavily smooth out slowly varying part by wide smoothing filters. Uniform or

non-uniform subdivision of gradient levels may be used depending upon the

distribution of gradient levels. The sizes of the filters used are0, 3, 5, 7.

2.4 Noise Cheating Technique

This technique is a combination of two averagings with different window

sizes. We average the noisy Image using an mxm window and average the noisy

picture again by an nxn (n > m) window. In the original paper [7] the

authors quantize grey levels of "severely" averaged images using a quantum

step that Is at least four times the standard deviation of the averaged

picture. But If the standard deviation of the averaged picture is large

enough, the quantizing process wipes out everything and this really happened

" .,- ~ , ~ I - - -. - - - -X, - t & -- -.. . . ... . .
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In our case. So we may have to skip the quantizing step depending upon the

size of the standard deviation. Afte , averaging the noisy Image with two

different sizes of wlidows we replace each grey level In the "llghtly" averaged

Image by the closest grey level among the corresponding eight surrounding

Image points In the "severely" averaged image.

The Idea Is that we retain the resolution of the "lightly" averaged

picture, while we enjoy the reduction of noise level of the "severely" averaged

Image. The combining scheme Is a kind of discrete maximum likelihood approach.

m-2, n-3 were used for the experiment.

III. EXPERIMENTAL RESULTS AND CONCLUSION

White Gaussian noise was added to generate a 10 dB (variance of signal/

variance of noise) noisy picture of size 256x256. The bandwidth of the low

pass Gaussian filter In synthetic highs system is 0.116. The original noise-

less picture is shown in Fig. 2 and the 10 dB noisy picture and "lows" of the

noisy In Fig. 3 and Fig. 4, respectively. Figure 5 shows the noise reduction

filter used In synthetic highs system. But this filter should be extended by

a 3x3 window so as to pass both the positive and the negative parts of boun-

darie, detected by Laplaclan or gradient edge detector, otherwise we lose

resolution significantly. Reconstructed pictures are given in Fig. 6 and

Fig. 7. Outputs of the two-dimensional median filter are shown In Fig. 8 and

Fig. 9. In 5x5 median filtered picture we lost resolution quite a bit.

Median filters seem to be very effective for removing irpulse errors (all dark

spots have gone away in both outputs), but still retain Gaussian noises at an

unpleasant level. Variable width Gaussian filters are truncated at 2 x

standard deviation.

A one-dimensional filter was used sequentially In horizontal and vertical

directions and when we apply the filter in the vertical direction we use data
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already averaged In the horizontal direction. This may cause more reduction

of nolbe but resolution Is lost also. Actually we didn't smooth out at the

top Interval where the absolute gradient Is hlghest, (Filter size was specified

by 0 In section 2.3.) Comparing with the variable width Gaussian filter,

the performance of the variable wldth median filter Is very poor. In the noise

cheatlng technique we first averaged the noisy picture by 2x2 window and re-

placed the grey levels at 4 picture points in the window by the averaged level.

We did the same thing with 3x3 window and eliminated Isolated picture blocks

(Note: 3x3 window will have the same grey level after averaging) by simply

replacing the center grey level by the surrounding grey levels. Since the

whole block (2x2,3x3) has the same grey level, the output of the noise cheating

technique has lots of square blocks. The performance of this technique seems

the worst. The two-dimensional median filter Is most economical and easiest

to apply but the synthetic highs system gives the best result although it

is most costly.

Some of the techniques can be modified for better performance. For

example, we may use the noise reduction filter used In the synthetic highs

system for variable width Gaussian or median filter and we may use moving 3x3

overlapping window replace the center grey level by the averaged level rather

than assigning the same grey level to the whole block. Finally, we emphasize

that the performance of noise reduction techniques depends upon the type of

noises Involved.
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Figure 6 Reconstructed picture
Laplacian synthetic
highs used

Figure 7Reconstructed picture
Gradient synthetic
highs used
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Figure 8 Reconstructed picture
3x3 median filter used

Figure 9 Reconstructed picture

5x5 median filter used
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figure 10 Reconstructed picture
Variable width Gaussian
uniform quantization used

I_

Figure 11 Reconstructed picture
Variable width Gaussian
non-uniform quantization
used
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Figure 12 Reconstructed picture
Variable width median
filter uniform
quantization used

Figure 13 Reconstructed picture
Variable width median
filter non-uniform
quantization used
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Figure 14 Rconstructed picture
Noise cheating technicm
2x2 end 3x3 windows used
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TWO-DIMENSIONAL DIGITAL RECURSIVE FILTERS AND THEIR

APPLICATION TO IMAGE PROCESSING

Brian O'Connor and T.S. Huang

Two dimensional digital recursive filters have the potential of saving

computer time and storage in the processing of large two dimensional arrays such

as images. In our research we are concerned with their design and their applil-

cation to Images. The desired processing to be performed on an image can gen-

erally be described in the frequency domain. In two dimensional filter design

the filter coefficients are found which best approximate this desired frequency

response, while at the same time guaranteeing stability.

Several possible design approaches exist. One relies on nonlinear optimi-

zation techniques to minimize the X norm of the difference between the desired

magnitude or group delay response and tht filter response [1,2]. These tech-

niques can be modified to guarantee stability. However, numerical problems

arise with nonlinear optimization techniques, namely very large amounts of

computation, sensitivity to starting points, and the possibility of converging

to a local rather than global minimum. In addition, It is necessary to check

stability of the designed filter at each iteration of the algorithm. However,

a recently proposed method has eliminated need for the stability tests [3].

Another approach Is based on an algorithm which allows the designer to specify

an arbitrary magnitude-squared characteristic which is approximated optimally

In a weighted Chebyshev (minimax) sense. Here, the optimization procedure can

be formulated as a linear programming problem and the filter coefficients can

be calculated using the two-dimensional discrete Hilbert transform to approxi-

mately factor the two-dimensional magnitude-square frequency response [4].

There are two problems in using this algorithm. The first is that fairly

large amounts of computer time are needed to design filters. Secondly, the

.
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factorization of magnitude-square function to obtain a filter implementation con-

tains an Infinite number of terms and hence truncation is necessary.

Generally, the nonlinear optimization techniques require that the filter

consist of first and second order sections connected in cascade. This cascade

form has many advantages over the direct form [1]. In our research we are in-

vestigating the approximation problem, i.e., how well can a cascade of first

. and second order sections approximate an arbitrary frequency response.

Another design approach is to find filter coefficients which approximate

a desired frequency response without adding the stability constraint; then, if

the filter is unstable, stabilize it so that the resulting filter has approxi-

mately the same frequency response. Several stabilization methods exist. The

first was proposed by Shanks [51. It stabilizes an unstable filter by finding

its double planar least squares inverse (PLSI). Until recently the PLSI of a

filter was assumed to be always stable. However, a special counter example has

been constructe' by Genin and Kamp where they find a 2x2 PLSI of a 4x4 array

[6]. It is still an open question whether a PLSI of the same size as the input

array is stable. Jury [7] has proved this for the special cases of 3x2 and 2x3.

The double PLSI of an array will produce a filter array whose magnitude response

approximates that of the unstable filter. Howeer, in many applications the

approximation is not adequ tn. In our work we have found an example where the

- double PLSI calculated by Read and Treitel 's unstable. But no claims on find-

Ing a significant counter example will be made until Read and Treitel's [8]

calculation of PLSI can be checked.

Another approach stabilizes an array by developing a two-dimensional dis-

crete Hilbert transform to calculate the analytic phase function from the mag-

nitude-squared frequency response. The method accomplishes stabilization with

little accomparying distortion of its amplitude spectrum. Several developments
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of the discrete Hilbert transform exist. Read and Treitel [8] generalized it

to two dimensions by a direct extension of the one dimensional discrete case.

The amplitude spectrum of the stabilized filter more closely approximates the

desired magnitude than the double PLSI filter. However, not all filters pro-

duced by this method are stable. An example of this was given in their paper

and we have found many more. Another method relies on discretizing the con-

tinuous two-dimensional Hilbert transform to obtain a two-dimensior.al discrete

Hilbert transform. This has been derived by Dudgeon [9] and we have formulated

and programmed a special case. Preliminary results seem to indicate that this

method does produce stable filters, but the approximated amplitude is notable

distorted.

We have been studying a third method which either employs the cepstrum or

complex cepstrum. The study was motivated by work done by Ekstrom and Woods

[10] on two dimensional spectral factorization. The inverse cepstrum of the

first quardrant of the autocorrelated unstable filter's cepstrum is windowed

to give a stable filter whose frequency response is close to that of the un-

stable filter. Preliminary results show that even though stability is not

guaranteed the resulting filters are usually stable. This method can also be

used to test stability of any two-dimensional recursive filter. The original

filter Is stable if the calculated array is equal to the original array. Be-

cause the FFT is used the correspondence is only approximate and some equality

measurement must be used to ascertain stability. Through experimentation we

found that for 3x3 arrays the filter is stable if the mean square difference

between input and output arrays is less than .0000043. (16x1 6 FFT were used.)

Another possible way of checking stability and stabilizing unstable

filters is to work with the complex [12] ce-'trum of the filter array. By

properly processing the cepstrum we can obtain arrays which are nonzero
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In certain distinguished regions In the (Zl, Z2) plane, and thus, depending on the

the type of filter, guaranteed to be stability. Many problems exist in one-

dimensional cepstral analysis and they are Increased in two dimensions. A two

dimensional complex cepstrum program has been written using a modification of

a new phase unwrapping algorithm which was developed by Tribolet [11]. Details

about the theory and implementation of two-dimensional cepstrial analysis will

be given in the next report.

Future work will include a detailed analysis of two-dimensional cepstral

techniques applied to filter design and stabilization.
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COMPARISON OF THE PROJECTION METHOD WITH SINGULAR

VALUE DECOMPOSITION

S.P. Berger and T.S. Huang

The purpose of the work has been to evaluate the relative merits of the

projection method of image restoration as compared with the singular value de-

composition (SVD) approach.

The projection algorithm is an iterative method of solving a set of linear

equations, where the equations are the discrete representation of the degrada-

tion process. The algorithm can incorporate a priori information. It has been

shown to yield effective results for various types of degradation, including

space-variant distortions.

The SVO approach has been used successfully in image restoration. It In-

voiles the treatment of the degradation in matrix form. By application of a

pseudo-inverse matrix, the restoration is hopefully achieved.

Both approaches are limited by the effects of noise. The required number

of Iterations in the projection method and the number of terms utilized with

SVD, are determined subjectively. The effects of noise Increase with the

number of terms and the number of iterations, and tend to overshadow the

restoration process.

In the actual implementation of the SVD, difficulties with this approach

have arisen. The amount of computer time required for the calculation of

elgenvalues and elgenvectors can be prohibitive for large degradation matrices.

Also, perh.mps to the size of the matrix, the actual implementation has yielded

faulty results. The success of the rnw-thod depends heavily on the type of

degradation that is effected on the border of the image. Minor changes in the

form of the degradation matrix seem to create major problems in the operation

of the computer Implementation. The next report will contain at least a

partial resolution of these difficuitles.

i . ., -, ,*. . V. , ,, . . ., , < .. ". - i ' : . - -I -
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FOURIER DESCRIPTORS

T. Wallace and P.A. Wintz

The Fourier descriptor (FD) is one method of describing the shape of a

planar figure. Given a figure in the complex plane, the contour can be traced,

yielding a complex function of time. If the contour is traced repeatedly, the

periodic function which results can be expressed in a Fourier series. Granlund

[I] defines the FD of a contour as the coefficients of this Fourier series.

To implement this method of shape description, It Is necessary to sample

the contour at a finite number of points. Since the discrete Fourier transform

of a sequence gives us the values of the Fourier series coefficients of the

sequence, assuming It to be periodic, using an FFT algorithm satisfies the

definition above. The computational advantages of the FFT are well known.

The goal of this work is to classify the shapes of objects using their

Fourier descriptors. The operations of rotation, scaling, and moving the

starting point are easily implemented In the frequency domain by simple arith-

metic on the frequency domain coefficients. While shapes may be compared In

the space domain, the procedures required to adjust their size and orientation

are computationally very expensive. Normally an iterative type of algorithm is

employed, which searches for an optimum match 6etween the unknown shape and the

test set.

The goal of classification using Fourier descriptors is to develop an

algorithm which will normalize the size and orientation of a shape before any

comparisons to test shapes are made. If this can be accomplished, the classi-

fication process becomes a simple clustering problem with no Iterative searches

to contend with.

In our last quarterly report, the FD normalization problem was dis-

cussed, and the results of an experiment presented, It was shown that If the
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contours under Investigation were bilaterally symmetric, much less information

was contained in the phases of the FD than in the magnitudes. The validity of

classifying contours using the magnitudes of their FD's was demonstrated by

classifying 18 airplane contours using this method. The Euclidean distance

measure was used, and the distances between FDs proved to correlate well with

the actual differences between the contours.

The goal of this study of Fourier descriptors is to eventually apply this

method to contours traced using actual photographic data. To simulate this

situation, an experiment was conducted using 20 aircraft contours digitized to

two different resolutions, 128x128, and 64x64. The high resolution versions

were taken to be accurate representations, and the lower resolution versions

were assumed to be corrupted by noise and quantization error. Examination of

representative contours (Figs. 1-6) show that the 128x12 8 contours are quite

good representations, while the 64x64 show significant distortion of the

smaller important features. This experiment was performed in order to test

various distance measures, as well as to test suitability of the algorithm for

use with actual photographic data.

While the experiment described in [1] was useful in demonstrating the

general validity of classifying contours using distances between normalized

Fourier descriptors (NFDS), a comparison of various distance measures was

difficult due to lack of a definitive measure of similarity among the contours

themselves. This obstacle was overcome by using the different resolution

versions of the same planes.

The mean square criterion used previously was compared to an absolute

value criterion. The results using the absolute value criterion were slightly

better, as every 64x64 contour was correctly Identified, whereas using the

mean square criterion, only 19 out of 20 were correctly Identified.
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A simple application of Parseval's theorem shows that the mean square

criterion in the frequency domain corresponds to a sum of the point by point

mean square error in the time domain. There are some difficulties In mathe-

ratically relating the frequency domain absolute value criterion to the con-

tours In the time domain. However, it is easy to compare the two criteria on

a qualitative basis.

It Is obvious that the absolute value measure will be more tolerant of

one or two large coefficient differences than the mean square measure. Using

either method, the largest coefficients will account for most of the distance

measured. Accordingly, we should consider the possibility of large variations

between coefficients of large expected value, which turn out to be the lowest

frequency ones.

The second largest coefficient for each airplane FD Is A(-3). The effects

of varying this coefficient are to change the width of both the wings and the

body of the plane. Smaller detail such as engine shape is virtually unaffect-

ed. Another coefficient of large expected value is A(-1). As discussed In

[1], this coefficient describes the length to wingspan ratio of an airplane

contour. More generally, varying A(-I) tends to elongate any contour. Again,

the smaller detail Is not greatly changed.

In summary, the absolute value criterion should tolerate more differences

Ingress structure of the contour, such as elongatedness or thickness to

length ratio, while emphasizing variations In smaller detail. It seems likely

that the absolute value measure might correspond more clearly to the differ-

ences which human observers find Important than does the mean square criterion.

The classifications using the two methods were too similar to offer a

definitive comparison of the two classification methods. However, the success

of the experiment shows that we are ready to apply the FD algorithm to contours

...................... '
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extracted from actual photographic data. We plan to Interface the BLOB con-

* tour tracing algorithm to the FD program as the next step in this research.

. The magnitude vs. phase Information question will also be examined In the

context of developing a normalization procedure which preserves all of the

-Information contained In the contour.
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Figure 3 128 x 128
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Figure 5 128 x 128
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Figure 6 64 x 64
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FILTERING TO REMOVE CLOUD COVER IN SATELLITE IMAGERY

0. P. Mitchell and P. L. Chen

I. INTRODUCTION

This recent work is a continuation of the previous report "Satellite

Imagery Noise Removal" [ll. We are using 3-dimensional homomorphic filtering

techniques to remove cloud cover in LANDSAT data.

In the previous filtering results the noise power spectrum was estimated

by classifying each region of the noisy picture according to the level of noise

present using the multispectral data analysis software system developed by

Lars. These filtering results were not satisfactory due to the spectral

indistinctability of clouds and concretes.

It may also prove Impractical to use a multispectral classification pro-

gram to find the noise statistics. Instead it may be possible to use a

generalized cloud power spectrum derived by averaging many sample spectrums

together.

II. INDIRECT ESTIMATION OF NOISE STATISTICS

The easiest way to estimate the general power spectrum of cloud is done

by using data taken over water where the reflection is almost constant. In

this case, tht transformed scanner image (L is sun illumination, t is cloud

transmission, r is ground reflection, and s is the received scanner image)

Log (L - s(x,y)] Log L + Log t(x,y) + Log [L - ar(xy)]

is reduced to

I ,g [L - s(x,y)] - Log [L - ar(x,y)] + K

where K Is a constant, and the power spectrum obtained is that of noise except

for the d.c. (0,0) frequency point.

.,
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This power spectrum should be circularly symmetric since clouds have no

preferred orientatioi and should consist mainly of low spatial frequency com-

ponents since clouds are relatively large and smooth functions compared to

ground reflectance.

III. THREE DIMENSIONAL FILTERING

The real potential in the cloud filtering process Is incorporating a

third dimension, the spectral channels, forming a three dimensional reflection

r(x,y,z) and cloud t-ansmisslon t(x,y,z). The generalized linear filter thus

employed Is three dimensional H(jv,p) using three frequencies (two spatial

and one spectral). Although there are only four points in the spectral

- diw~nslon for LANDSAT data, the method has good promise, because most clouds

*follow a fixed response in the spectral dimension: cloud transmission

- Increases with wavelength in a predictable fashion. When this information Is

Incorporated Into the filter (by means of the 3-D power spectrum) image

variations which have the cloud spectral response are filtered out and image

variations which do not follow the expected response of clouds in the spectral

dimension are left In. The three dimensional filter, therefore, tends to

reject all variations that are low frequency in the spatial dimension and

follow the cloud spectral response in the third dimension.

Figures I to 4 are the 3-D power spectrum obtained from averaging the

spectrum from three separate 64x64 regions of clouds over water. The ordinate

Is a log scale. Figure 1 represents the spectral d.c. slice (sum of all

four spectral points), Fig. 2 represents the "one cycle per spectral band"

slice, etc. One interesting observation we have made is that most of the

cloud information is contained In slice 1 only and that Information in slices

2, 3, and 4 (other than the d.c. point in each) represent ground reflectance

Information and should be left in the filtered output.
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Figures 5 to 8 are the 3-D filter functions obtained for one particular

64x64 section of the image taken over land. The general cloud spectrum was

normalized so that it fell below the spectrum of "signal plus noise" and

was then subtracted from it for the signal spectrum estimate. K-te the filter

tends to attenuate low frequencies in slice one but leaves them In slices 2

through 4.

Figure 9 shows the composite filtered for 21 64x64 blocks of LANDSAT data

scanned over the Chicago area on a somewhat cloudy day.

IV. CONCLUSIONS

Three dimensional filtering of multispectral data to remove light cloud

cover Is a distinct possibility.

In Fig. 9 the filtered picture shows more detail than the original cloudy

one. Lake boundaries and highways have clearer appearances in the filtered

pictures.

The model of the cloud distortion needs to be refined based on the

results of filtering using the simple model presented in the previous report.

It may be necessary to consider convolutional effects of cloud cover as well

as multiplicative effects. The change in multispectral classification

accuracy after filtering may be a suitable measure of the performance of such

homomorphic filter.
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Figure 9(a) (Left) 3-0 filtered output (channel 3)

(Right) Original Landsat data (channel 3)

II.I

II

Figure 9(b) (Left) 3-D filtered output (channel 4)

(Right) Original Landsat data (channel 4)
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FACILITIES

3.T. Manufacturer .eterlption

. Beehive Elect. "Super-Bee" Terminals

2 Tex. Inst. "Silent 700" Terminals

Digi-Data Industry standard magnetic tape system;
2, 9-track and 1, 7-track drives; one each
NRZI and phase-encoded formatters/controllers

1 DEC Dual-drive DECtape unit

1 DEC RPO3 disk drive (40 million characters)
1 Fabritek 96K-word auxiliary memory system

(64K bought by ARPA, 32K by NASA)

-* I Versatek Electrostatic 'matrix printer

I Comtal Color picture display

I Data Printer 132 column, 600 LP.M. line printer

1 True-Data Punched card reader

Tektronix Model 4010, graphics display

1 DEC PDP-11/45 computer system; system includes:
32K memory
FPP-11 floating point processor (NSF money)
H960 extension mounting cabinet
3" -small peripheral mountings blocks (DD-li)
I UNIBUS rspeater/expander
DHII, 16-1ine terminal multiplexor
KWll-p programmed clock
"ANTS"'  type PDP-I1/IMP interface

Note: Our PDP-l1/45 is currently operating under the UNIX system.
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